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RESEARCH AGENDA
• Online discussions are socially important.

• In blogs, they develop in comments.

• Comment-based networks may contain denser areas –

communities – indicative of some (problematic) social 

issues.

• However, most research on communities in blogs has 

been on friendship networks (Lescovec 2008, Zakharov

2007).

• Comment-based network research uses authors, not 

posts as nodes (Adamic et al 2008, Ali-Hasan & Adamic

2009, Gomez et al 2008).



RESEARCH QUESTIONS

• Do comment-based communities  exist?

– Comment-based community in blogs: exists when a 

certain (fuzzy) set of posts or bloggers is commented 

by a certain set of bloggers

• If so, do they form around common topics of the 

commented posts or around authors of the 

commented posts?



NETWORK CONSTRUCTION

• For greedy community detection algorithms → 

bimodal post-commentator network projected to 

post-post network

• Two posts are considered connected if they 

have been commented by the same blogger

– If they have been commented by two different 

bloggers, they gain two edges in common

– If they have been commented twice y one blogger, 

they gain two edges in common

– Self-commenting is excluded.



RUSSIAN BLOGOSPHERE AND 
LiveJournal

• Russian blogosphere: about 58 mln blogs, 7-8 mln

posts a day(without microblogs).

• Commenting: mostly locked within blog platforms 

(around 100, 5-6 leading).

• Livejournal (most politicized): 2 (4) mln accounts, 60-

70 thousand posts a day.

• Followers-based ratings of bloggers are important in 

Russia.

• At rating level of 150 thousand LJ produces less than 

1 post per blogger per month.



DATA
• Top LJ 2000 bloggers (have 500+ followers, produce 

avg. 1 post per blogger per day, receive 20 times more 

comments).

• Time: April 1 – April 7 2013 (reasonable period for an 

event life-cycle, also: computational complexity limits).

• 24619 posts total,19039 posts with comments,1653 

excluded for technical reasons = 17 386 posts in 

analysis.

• 520 549 comments

• ≈ 4,5 mln edges “post-post”, after self-comments are  

excluded; 391 posts had no shared commentators.

• 1667 authors, 56217 commentators



METHODS 1
• Data collection: Koltran / LINIS BlogMiner software (full-text 

& relational structure of LJ).

• Community detection: Louvain algorithm, developers’ code.

• Community belonging / authorship correlation: SPSS, 

nominal measures of association.

• Topic similarity detection: LINIS TopicMiner & C++ codes:

– Text clearing, cutting & lemmatization;

– TF/IDF calculation (texts represented as lists of frequencies 

of words in them);

– Cosine similarity calculation (each pair of texts compared 

on the basis of words frequencies in them);

– Average similarity within comment communities compared 

to global average similarity.



COMMUNITY STRUCTURE
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AUTHORSHIP

Belonging of a post to a community strongly depends on the post’s 

authorship. I.e. communities tend to form around authors.

Value 

Asympt.Std. 

Error Approx. T

Approx. 

sig.
Lambda Symmetric ,209 ,003 59,644 ,000

Dependent blogger ,057 ,002 26,346 ,000

Dependent 

community

,522 ,007 56,832 ,000

Goodman & 

Kruskal Tau

Dependent  

blogger

,041 ,001 ,000

Dependent 

community

,510 ,004 ,000

Cramer's V ,466 ,000

Contingency 

Coefficient

,985 ,000



TOPICAL SIMILARITY 1

•Global average cosine similarity:  0,00015924; 

•Intra-commmunity average cosine similarity: 0,04916513 .

•Distribution of intra-community cosine similarity means  (see 

above) is power-law: there are tighter and looser 

communities.
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TOPICAL SIMILARITY 2

Middle part of intra-

community cosine similarity 

means distribution. X axis: 

global average cosine 

similarity

Below average are multiple, 

but extremely small 

numbers. I.e. topical 

similarity in a certain set of 

communities is manifest.
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TOPICS IN COMMUNITIES: EXAMPLES

comm ID

num of 

authors in 

comm

num of 

posts in 

comm description

c154 1 2author: sontucio, one post is a cut version of another

c86 5 8culture and privacy

c150 2 9author: bragin_sasha - on politics in Ulianovsk region

c39 5 20

dominant author: lumbricus where she went and what 

pictures she took

c52 8 43

15 natashav, 7 orange_sky_bird, 14 pelageya, most are 

women; dominant topics:  maternity, pregnancy, women 

problems; other private issues are present 

c7 14 48

29 posts by  hope1972, dominant topic: popstars and 

films; others also have a mixture of other issues.

c10 262 1135

Post/author distr. - power law, short posts (mean 83 

words against global mean 375), private messages 

dominate



TOPICS IN COMMUNITIES: 

INDICATORS

• Distributions of 

logarithms of 

cosine 

distances in 

communities 

where 

dominant 

topics are 

clearly present, 

have additional 

peaks.



METHODS 2

• LDA Gibbs-sampling 100-topic modeling 

(software: LINIS TopicMiner)

• Total weight of each topic calculated for 

each comment-based community

• Normalized

• Topics’ weights variance calculated for 

each community

• Low variance = multitopic communities



MONO- AND MULTITOPICAL COMMUNITIES
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CONCLUSIONS

• Comment-based communities in top LJ exist; community 
structure moderately manifest.

• Communities are uneven in size.

• Graph is sparse and interconnected by a minority of active 
commentators.

• Most comments are done by non-top bloggers (fandom 
commenting)

• Communities strongly tend to emerge around authors of posts.

• Communities have a less manifest tendency to form around 
topics.

• Some communities are clearly centered around a limited number 
of topics; they can be detected and described.



FUTURE RESEARCH

• Finalizing LDA results interpretation

• Inclusion of texts of comments into topic 

modeling.

• Bimodal post-commentator network clustering 

(inclusion of info about authors of comments).

• Author-commentator network analysis (fandom 

communities mining).
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