

Понятие о математической модели экономической системы.

Кольцов С.Н

www.linis.ru

Математическая модель и математическое моделирование

- Объект система состоящая из множества элементов. Это может быть ракета, рынок ценных бумаг или популяции животных.
- Модель несет в себе отражение связей между элементами. Математическая модель это математическое представление реальности.
- Учет связей между элементами характеризует полноту модели
- Моделирование процесс расчета поведения системы на основе граничных условий и заданны связей между элементами системы.
- Алгоритм логика расчета поведения системы. Логика может быть основана на разных математических подходах.

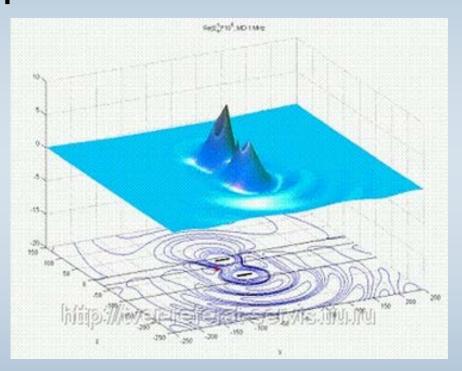
Модели основанные на дифференциальных уравнениях.

Математическое моделирование экономических и природных процессов приводит к необходимости решения уравнений, которые кроме независимых переменных и зависимых от них искомых функций, содержат также производные или дифференциалы от неизвестных функций. Такие уравнения называются дифференциальными.

Дифференциальные уравнения широко используются в моделях экономической динамики, в которых исследуются не только зависимость переменных от времени, а и от их взаимосвязи во времени.

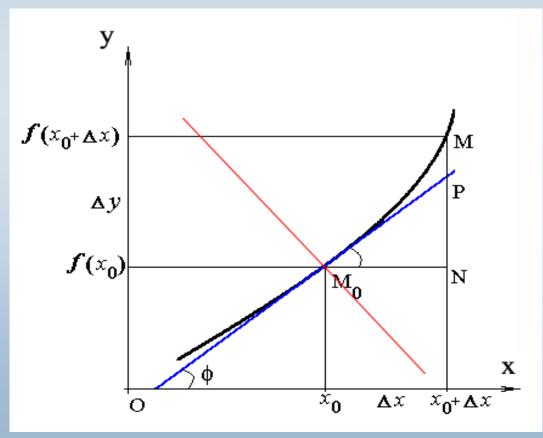
Подобие между объектом и моделью

- Физическое. Объект и модель имеют сходную физическую природу.
- Структурное. Наблюдается сходство между структурой объекта и структурой модели.
- Функциональное. Объект и модель выполняют сходные функции при соответствующем воздействии.
- Динамическое. Существует соответствие между последовательно изменяющимися состояниями объекта и модели.
- Вероятностное. Существует соответствие между процессами вероятностного характера в объекте и модели.
- Геометрическое. Существует соответствие между пространственными характеристиками объекта и модели.



Этапы экономико – математического моделирования

- Идентификация объекта.
 Определение основных параметров объекта.
- Оценка параметров модели. Выбор переменных модели на основе параметров объекта.
- Спецификация модели. Определение связей между параметрами. Построение уравнений.
- Проведения моделирования на основе заданных начальных условий.
- Анализ полученных результатов.



Определение и геометрическая интерпретация производной

Пусть x - независимая переменная, y = f(x)

Значение производной $f'(x_0)$ равняется угловому коэффициенту касательной к графику функции y = f(x) в точке $M_0(x_0, f(x_0))$; $f'(x_0) = \text{tg } \Phi$, где Φ - угол наклона касательной к оси 0X

Дифференциальные уравнения

Дифференциальным уравнением называют уравнение, содержащие производную или производные неизвестной функции.

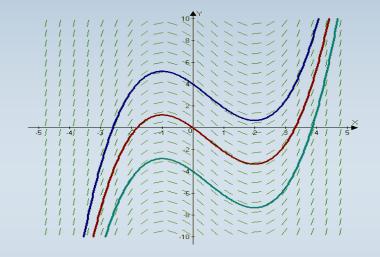
Дифференциальное уравнение 1-го порядка

$$f(y', y, x) = 0$$

Уравнения вида y'=f(y,x) называют дифференциальными уравнениями 1-го порядка, разрешенными относительно производной.

Задачей Коши для дифференциального уравнения 1-го порядка, разрешенного относительно производной, называют задачу об отыскании решения уравнения, удовлетворяющего начальному условию

$$\begin{cases} y' = f(x, y) \\ y(x = x_0) = y_0 \end{cases}$$


Порядок старшей производной или старшего дифференциала искомой функции в уравнении называется порядком уравнения

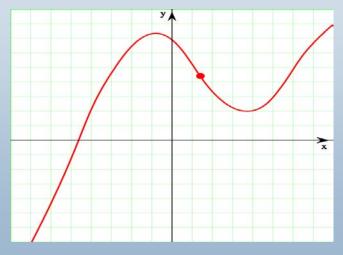

Дополнительные понятия

График решения уравнения называется интегральной кривой.

$$y' = \int f(x)dx + const$$

Непрерывная функция — функция без «скачков», то есть такая, у которой малые изменения аргумента приводят к малым изменениям значения функции.

СУЩЕСТВОВАНИЕ И ЕДИНСТВЕННОСТЬ РЕШЕНИЯ ЗАДАЧИ КОШИ

Если правая часть уравнения непрерывна и имеет непрерывную частную производную

 $\frac{df}{dx}$ в области D, то решение данного

$$\begin{cases} y' = f(x, y) \\ y(x = x_0) = y_0 \end{cases}$$

уравнения с заданными начальными условия существует и это решение единственно, то есть, через точку $y(\mathbf{x}=\mathbf{x}_0)=y_0$ проходит единственная интегральная кривая.

Важно также понимать, что теорема содержит только достаточные условия существования и единственности решения — при нарушении условий теоремы задача Коши может иметь или не иметь решений, может иметь несколько решений.

Модель Мальтуса

Пример из физики: Скорость распада атомов урана пропорционально числу частиц радиоактивного материала.

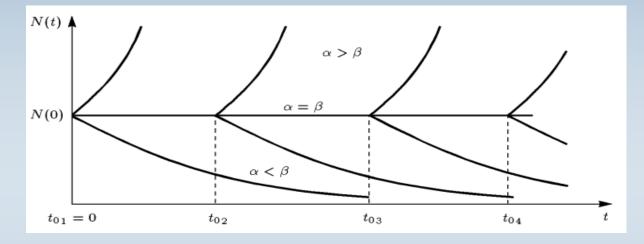
Пример из демографии: Скорость изменения населения пропорциональна численности населения умноженного на сумму коэффициентов рождения (α) и смертности (β).

$$\frac{dN(t)}{dt} = -\alpha N(t)$$

решение

$$N(t) = N(t = 0) \cdot e^{-\alpha t}$$

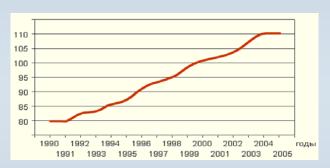
$$\frac{dN(t)}{dt} = (a - \beta) \cdot N(t)$$


решение

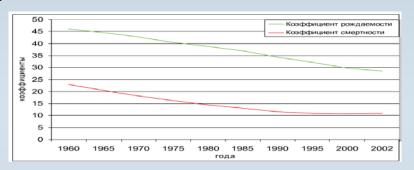
$$N(t) = N(t = 0) \cdot e^{(\alpha - \beta) \cdot t}$$

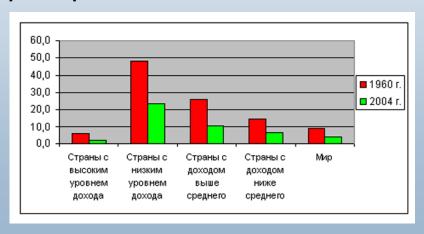
Модель Мальтуса

Как бы быстро не увеличивалось производство продуктов питания и как бы медленно не росло население, эти прямые пересекутся, то есть определенное число людей будет неизбежно лишено продовольствия.



Мальтус прав – Мальтус не прав


Темпы роста сельскохозяйственного производства растут


Ежегодный прирост населения мира сокращается

Динамика роста населения в странах с низким уровнем дохода

Сокращение доли сельского хозяйства в ВВП стран мира

МОДЕЛИ ЭВАНСА УСТАНОВЛЕНИЯ РАВНОВЕСНОЙ ЦЕНЫ НА РЫНКЕ ОДНОГО ТОВАРА

Цена товара является функцией от времени $p = p(t), t \ge 0$.

Предложение является функцией от цены товара в момент времени

t и определяется формулой:

$$S = S(t) = S(p(t)) = a + bp,$$

Спрос является функцией от цены товара в момент времени *t u*

определяется формулой:
$$D=D(t)=D(p(t))=c-dp$$

Цена товара выражается через спрос и предложение следующим образом:

$$\frac{dp}{dt} = \gamma(D(t) - S(t))$$

$$\frac{dp}{dt} = -\gamma(b+d)p + \gamma(c-a)$$

МОДЕЛИ ЭВАНСА УСТАНОВЛЕНИЯ РАВНОВЕСНОЙ ЦЕНЫ НА РЫНКЕ ОДНОГО ТОВАРА

Общее решение уравнения имеет вид:

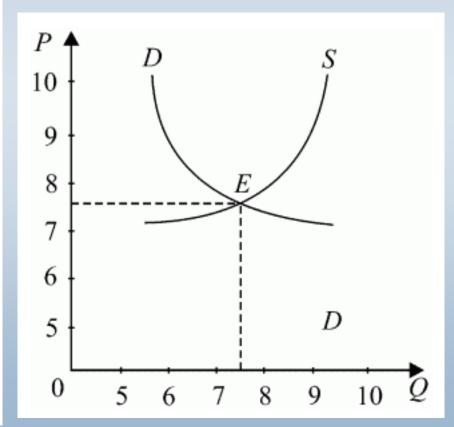
$$p = \alpha e^{-\gamma(b+d)t} + \frac{c-a}{b+d}$$

При условии что p(t = 0) = p0

$$p(t=0) = \alpha + \frac{c-a}{b+d} = p_0$$

Решение задачи Коши будет (пределу при $t \to +\infty$):

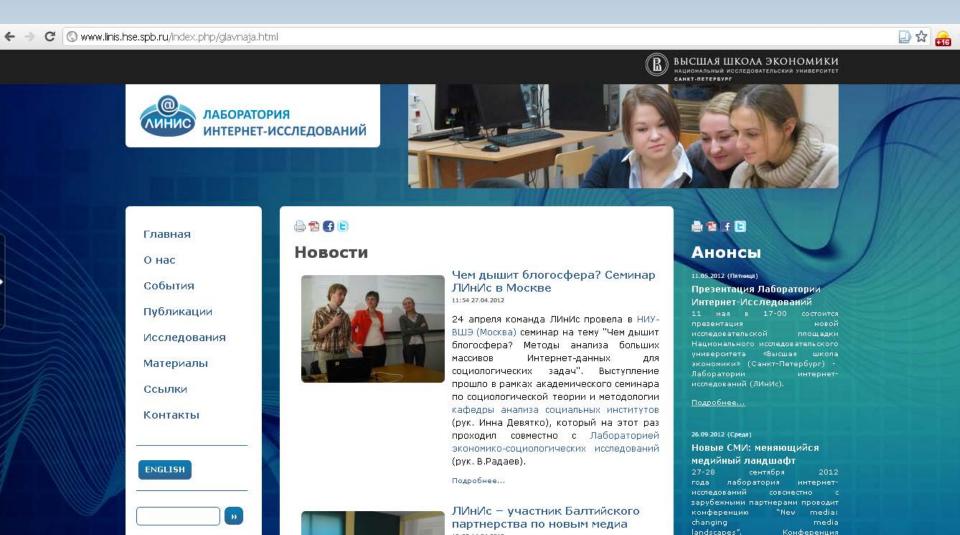
$$p^* = \lim_{t \to \infty} \left[\left(p_0 - \frac{c - a}{b + d} \right) e^{-\gamma(b + d)t} + \frac{c - a}{b + d} \right] = \frac{c - a}{b + d}$$



МОДЕЛИ ЭВАНСА УСТАНОВЛЕНИЯ РАВНОВЕСНОЙ ЦЕНЫ НА РЫНКЕ ОДНОГО ТОВАРА

Спрос на картофель и его предложение

Величина предложения в неделю, т	Цена 1 кг/руб.	Величина спроса в неделю, т	Превышение величины спроса (+) и величины предложения (-)
5	5	10	+ 5
6	6	9	+ 3
7	7	8	+ 1
7,5	7,5	7,5	0
8	8	7	-1
9	9	6	-3
10	10	5	-5


Равновесная цена

THANK YOU!

