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ABSTRACT
We propose a novel approach for estimating the optimal values of
hyper-parameters in topic modelling based on Renyi entropy and
deformed perplexity. This approach is inspired by the concepts of
statistical physics, where the collection of documents and the set of
words can be considered an information statistical system residing
in a nonequilibrium state. We introduce a notion of ’deformed
perplexity’ which is expressed in terms of Renyi entropy and can
also be used for tuning the values of hyper-parameters. We apply
this approach to three topic models: pLSA, BigARTM and LDA
Gibbs sampling, by studying the functional dependence of the topic
modeling results on the values of hyper-parameters in terms of
Renyi entropy. We experimentally demonstrate the effectiveness of
the proposed approach for three datasets of different sizes and in
different languages (i.e. English, Russian and French).
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1 INTRODUCTION
Nowadays, topic modelling (TM) is represented be three major
groups of models: 1. Models based on Gibbs sampling procedure, 2.
Models based on Expectation-Maximisation (EM) algorithm, and 3.
Hierarchical topic models. Unfortunately, all of them share a com-
mon problem: they all lack criteria to optimize their parameters,
such as the number of topics, parameters of Dirichlet distribution
or regularization coefficients [3, 37]. The task of TM is equivalent to
stochastic matrix decomposition, where a larger matrix F contain-
ing distribution of wordsw by documents d is approximated by the
multiplication of two matricesΘ = (θtd ) and Φ = (ϕwt ) of lower di-
mensions. However, stochastic matrix decomposition is defined not
uniquely but with accuracy up to a non-degenerate transformation
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[38]. If F = ΦΘ is a solution then F = (ΦS ) (S−1Θ) is also a solution
for all non-degenerate S under which Φ′ = ΦS and Θ′ = S−1Θ
are stochastic matrices. In terms of TM, ambiguity in retrieving
the multidimensional density of distribution mixture means that
the algorithm starting from different initial approximations will
conjugate to different points of the solution set. This is expressed in
the fact that different runs of the algorithm on the same source data
give different output matrices Θ and Φ. The problems that have
non-unique or non-stable solutions are termed ill-posed [36]. A gen-
eral approach to avoiding multiple solutions is given by Tikhonov
regularization [36]. The essence of regularization is to redefine a
priori information that allows for narrowing the set of solutions by
introducing restrictions on matrices Θ and Φ [31] and by modifying
the sampling procedure [2]. Furthermore, regularization can be
achieved by introducing a combination of conjugate functions [11]
and different types of regularization procedures [37, 38]. Thus, TM
parameter optimization is a significant problem that still needs an
extensive research. As a partial solution, we propose an approach
based on the concepts of statistical physics. Here, a collection of
documents is considered an information thermodynamic system.
For such a system, Renyi entropy can be introduced within the
thermodynamic formalism [33] analogously to [21]. The values of
hyper-parameters or regularization parameters are independently
set and must be determined by searching for the minimum nonex-
tensive entropy of the system. So, the optimal values of parameters
correspond to the situation when an information measure is at its
maximum (correspondingly, an entropy is in its minimum [8]). It
is important to note that the proposed approach does not apply
to hierarchical models, which would demand its modification and,
therefore, a special research. The rest of this paper is organised as
follows. The second section briefly discusses three different topic
models characterized by different types of regularization with pa-
rameters and hyper-parameters. In the third section, approaches
to determining parameters of topic models are studied. The fourth
section begins with introduction of Renyi entropy and deformed
perplexity that are proposed as the criteria to optimize parameters
and hyper-parameters in topic models. The fifth section presents
the experiments carried out on several datasets. Finally, the overall
analysis of the obtained results is presented in the sixth section.

2 BACKGROUND AND RELATEDWORK
2.1 Basics of Topic Modelling.
TM is a family of mathematical algorithms based on the following
assertions [17]:
1. Let D be a collection of textual documents,W be a set of all
unique terms (vocabulary). Each document d ∈ D is a bag of terms
w1, ...,wnd from the vocabularyW .
2. It is assumed that there exists a finite number of topics T , and
each entry of a word w in document d is associated with at least
one topic t ∈ T . A topic is considered to be a combination of words
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which are often (in statistical sense) reproduced together in a large
number of documents.
3. A collection of documents is considered a stochastic and in-
dependent sample of triples (wi ,di , ti ), i = 1, ...,n from a discrete
distribution p (w,d, t ) on a finite probability spaceW ×D×T . Words
w and documents d are observable variables, topic t ∈ T is a latent
(hidden) variable.
4. It is assumed that the order of words in the set of documents is
not important for TM (‘bag-of-words’ model). Similarly, the order
of documents in a collection is also insignificant.
In TM, the appearance probabilityp (w |d ) of a termw in a document
d can be expressed as follows:

p (w |d ) =
∑
t ∈T

p (w |t )p (t |d ) =
∑
t ∈T

ϕwtθtd , (1)

where p (w |t ) = ϕwt is the appearance probability of a word w
under a topic t , p (t ,d ) = θtd is the probability of a topic t in a
document d .

Thus, constructing a topic model from a set of documents means
solving a problem, where it is necessary to find the set of latent top-
icsT based on observable variables d andw , i.e. the goal is to obtain
a set of one-dimensional conditional probabilities p (w |t ) ≡ ϕwt for
each topic t , which form a matrix Φ ≡ (ϕwt )w ∈W ,t ∈T expressing
the distribution of words over topics and a set of one-dimensional
conditional probabilities p (t |d ) ≡ θtd for each document d , which
form a matrix Θ ≡ (θtd )t ∈T ,d ∈D expressing the distribution of
topics over documents. Different types of topic models are related
to different regularization algorithms. In the following, we consider
several algorithms, which are used in our experiments.

2.2 Probabilistic Latent Semantic Analysis
(PLSA)

In the framework of this model, the determination of the matrices
Φ and Θ is performed as described in [17]. The entire dataset is
generated as:

p (D) =
∏
d ∈D

∏
w ∈W

p (d,w )n (d,w ) =
∏
d ∈D

∏
w ∈W

p (d )n (d,w )p (w |d )n (d,w )

=
∏
d ∈D

∏
w ∈W

p (d )n (d,w )
∑
t ∈T

p (w |t )n (d,w )p (t |d )n (d,w )

where p (d,w ) is the joint probability distribution, n(d,w ) counts
the appearance frequency of the termw in the document d . Note
that this model involves a conditional independence assumption,
namely, d andw are independently conditioned on the state of the
associated latent variable [17].

The estimation of the one-dimensional distributions is based on
log-likelihood maximization with linear constraints:

L(ϕ,θ ) =
∑
d ∈D

∑
w ∈W

n(d,w ) ln

p (d )

∑
t ∈T

ϕwtθtd


→ max

ϕ,θ
L(ϕ,θ ),

where ϕwt ≥ 0, ∑w ∈W ϕwt = 1, θtd ≥ 0, ∑t ∈T θtd = 1.
The determination of the local maximum of L(ϕ,θ ) is carried

out using Expectation-Maximization (E-M) algorithm. The initial
approximation of ϕwt and θtd is chosen randomly or uniformly
before the first iteration.

E - step: using Bayes’ rule, conditional probabilities p (t |d,w ) are
calculated for all t ∈ T and eachw ∈W , d ∈ D [18], namely:

p (t |d,w ) =
p (d,w |t )p (t )

p (d,w )
=

p (d |t )p (w |t )p (t )

p (d )
∑
s ∈T p (w |s )p (s |d )

=

=
p (w |t )p (t |d )∑
s ∈T p (w |s )p (s |d )

=
ϕwtθtd∑
s ∈T ϕwsθsd

.

M-step: using conditional probabilities, new approximations of ϕwt ,
θtd are estimated, namely:

ϕwt =

∑
d ∈D n(d,w )p (t |d,w )∑

w ∈W
∑
d ∈D n(d,w )p (t |d,w )

,

θtd =

∑
w ∈W n(d,w )p (t |d,w )∑

t ∈T
∑
w ∈W n(d,w )p (t |d,w )

.

Thus, alternating E and M steps in a cycle, p (t |d ) and p (w |t ) can
be estimated. Note that this model has no additional parameters
except of ’the number of topics’, which defines the size of matrices
Φ, Θ.

2.3 The Additive Regularization of Topic
Models (ARTM) (Models based on E-M
algorithm)

The algorithm of additive regularization is an extended version of
pLSA [38]. This model was developed to combine different types of
topic models in order to create a new model with the desired prop-
erties for specific applications [20]. The main idea of the algorithm
is based on regularized Maximum Likelihood Estimation, i.e., the
following optimization problem is considered:

L(Φ,Θ) + R (Φ,Θ) → max
Φ,Θ
,

where
L(Φ,Θ) =

∑
d ∈D

∑
w ∈d

ndw ln(
∑
t ∈T

ϕwtθtd ).

R (Φ,Θ) =
k∑
i=1

τiRi (Φ,Θ),

The regularization term R is given not only by functions Ri , but also
by values of regularization coefficients τi . The local extremum of
the above optimization task is searched using E-M algorithm. In the
framework of this model a large number of different regularizers
is introduced [38]. Despite the large number of possibilities of this
approach, the method of additive regularization does not help with
choosing regularization parameters τi . Basically, the selection of
regularization coefficients is carried out manually taking into ac-
count the perplexity stabilization [11], [37]. Generally, the problem
of selecting regularizers and their coefficient values is still in the
research core for this type of models.

Let us briefly discuss two particular sparsing regularizers (called
SparsePhi, SparseTheta). The functionality of such regularizers is
mainly to control the sparseness of Φ and Θ in order to ensure
that each document and each word are related to a small number
of topics [38]. Sparsing regularizer for Φ and Θ can be written as
follows [38]:

R (Φ,Θ) = −β0
∑
t ∈T

∑
w ∈W

βw lnϕwt − α0
∑
d ∈D

∑
t ∈T

αt lnθtd ,
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where (βw )w ∈W , (αt )t ∈T are given discrete distributions, for in-
stance, uniform distributions. Note that the coefficients α0, β0 are
included in the maximization procedure. Moreover, as it was noted
in [37], the regularizers can conflict with each other, worsen the
convergence of the topic model for points away from the set of
solutions or lead to degeneracy of the model.

2.4 LDA (Model based on Gibbs sampling
procedure)

LDA Gibbs sampling model is a topic model, in which each topic
is smoothed by the same regularizer in the form of Dirichlet func-
tion [15]. In this model, each document is considered as one-di-
mensional grid and each word of the document is considered a
node. A node can reside in one of T states (topics). The goal of
examining such a Potts model is to estimate the distribution of
nodes (words) over the set of states, i. e. by topics. The difference
between Potts model and topic modeling is that in TM, the amount
of documents can be huge, and the probability of a node to belong
to a state (topic) is defined not only by the distribution of words
over topics in one document but also by the distribution of topics
over documents. According to Blei et al. [11], it is assumed to use
Dirichlet distributions with one-dimensional parameters β and α ,
correspondingly, in order to simplify the derivation of analytical
expressions for the matrices Φ and Θ. On this basis, the probability
of the ith word in a given document d is defined as follows [15]:

p (wi,d ) =
T∑
j=1

p (wi,d |zi,d = j )p (zi,d = j ) =
T∑
j=1

ϕwjθd j =

=

T∑
j=1

cd, j + α∑T
j=1 cd, j + αT

·
cw, j + β∑W

w=1 cw, j + βW
,

(2)

where zi,d is a latent variable (topic), p (wi,d |zi = j ) is the probabil-
ity of the word wi in document d under the jth topic, p (zi,d = j )
is the probability of choosing a word from topic j in the current
document d , wi,d is the ith word in document d , counter cd, j is
the number of words in document d assigned to topic j, counter
cw, j is the number of wordw is assigned to topic j;∑Tj=1 cd, j is the
total number of words in document d (i.e. length of document d),∑W
w=1 cw, j is the total number of words assigned to topic j. Corre-

spondingly, θ and ϕ can be obtained as follows:

θd j =
cd, j + α∑T

j=1 cd, j + αT
, (3)

ϕwj =
cw, j + β∑W

w=1 cw, j + βW
. (4)

The algorithm of calculation consists of three phases. The first
one is the initialization of matrices, counters and parameters α
and β , in addition to specifying the number of iterations. Counters,
which define the initial values of matrices Φ and Θ, are set as
constants. So, matrices are filled with constants, for example, Φ
can be filled with uniform distribution, where all elements of the
matrix are equal to 1/W , whereW is the number of unique words
in a collection of documents.

The second phase (sampling procedure) is an exhaustive search
through all the documents and all words in each document in a

cycle. Each word wi in a given document d is matched with the
topic number, which is generated as follows:

p (zi = j |z−i ) ≈
c−id, j + α∑T

j=1 c
−i
d, j + αT

·
c−iwi , j

+ β∑W
w=1 c

−i
w, j + βW

,

where c−id, j is the number of words from document d assigned to
topic j not including the current word wi , c−iw, j is the number of
instances of wordw assigned to topic j not including the current
instance i , c−id, j and c

−i
w, j are called counters. Here, the probabilities

of belonging of the current word to different topics are calculated,
then the most probable topic is assigned to the current word. The
initial probability of word-topic matching is defined only by 1/T
and 1/W when considering a uniform distribution as the initial
approximation of matrix Φ. However, after each word matching to
a topic, the values of counters change and, hence, after an important
number of iterations, counters contain the full statistics of document
collection under study.

At the third phase, Φ and Θ are calculated according to the equa-
tions 3 and 4. Finally, the matrices are ready for manual analyses,
where for sociological analysis, only the most probable words and
documents for each topics are considered. Note that the coefficients
α and β defining Dirichlet distribution are parameters of this model,
which one has to select.

3 PROBLEMS OF HYPER-PARAMETERS
ESTIMATIONS

To determine the values of parameters in topic modelling, two
functions are most often employed for this purpose: 1) perplexity,
2) Kullback-Leibler divergence.

3.1 Perplexity and likelihood
The perplexity is a standard criterion for topic models that evalu-
ates the efficiency of the model to predict the new data. Specifically,
the perplexity of a set of M testing documents (di , i = 1, ...,M) is
defined as [11, 27]: perplexity(Dtest) = exp

(
−

∑M
i=1 logp (di )∑M

i=1 Ni

)
, where

Ni is the number of words in document di . The lower the perplexity
score is the better the parameters’ values are. Generally, perplex-
ity can be expressed in terms of entropy in the following form:
perplexity = 2 entropy or perplexity = e entropy [12], [14], where
entropy is the Gibbs-Shannon entropy. The use of perplexity for
the selection of parameters for topic models is discussed in a num-
ber of works [11, 15, 30]. In [30], the convergence of topic models
such as LDA Gibbs sampling and HD-LDA is studied, where it
has been observed that the perplexity behaves as a monotone de-
creasing function of iteration number. Thus, the perplexity is a
convenient clue for determining the optimal number of iterations
in topic models [11, 15, 34]. Moreover, the perplexity is used in
work [30] also for determining the optimal number of topics. The
authors demonstrated that the perplexity decreases monotonously,
by increasing the number of topics. Such a behaviour is typical for
Gibbs sampling algorithm and for hierarchical models.

The use of perplexity has some limitations, which are reviewed
in [13]. The authors demonstrated that the value of perplexity
depends on the vocabulary size of the given collection, used for
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topic modeling. The dependence of perplexity value on type of
topic model and size of vocabulary is shown in [34] as well. Thus,
the comparison of topic models, conducted on different datasets
and different languages using the perplexity is complicated [5, 40]
due to the aforementioned reasons and therefore perplexity-based
methods are not stable.

Some works show another behaviour of perplexity, for example,
authors of [4] show that the perplexity as a function of hyper-
parameters has a notable unique minimum for collapsed Gibbs
sampling (CGS) model, variational Bayesian inference (VB) model
and collapsed variational Bayesian inference (CVB). Also, authours
of [40] show that the perplexity as a function of topic number has a
notable minimum for hierarchical topic model, and maximal values
of perplexity correspond to minimum and maximum of numbers
of topics (i.e. for T → 1 and T → ∞). In [5], it has been shown that
the perplexity, used for a model with feature regularization, has
clear minimum for some values of varying parameters. Also, the
maximum value of perplexity corresponds to the maximum value
of varying parameter. Thus, it can be noticed that different types of
perplexity behaviour can be found in literature on TM without an
explanation of such behaviour.

Another measure, which is often used when analyzing the results
of topic modeling, is logarithm of likelihood [15] p (ŵ |T ), where ŵ
is a corpus . Usually, the calculation of this value is carried out when
the perplexity stops changing and no further iterations are needed.
Correspondingly, the hyper-parameters and number of topics are
selected when finding maximum of logarithm of likelihood [15].
Notice that logarithm of likelihood is a version of perplexity and
different types of probability logarithm behaviour are shown in
literature as well as for perplexity.

3.2 Kullback-Leibler divergence
Another measure, which is widely used for analysing topic models
is Kullback-Leibler divergence (KL) (or relative entropy) [10, 25].
In the field of TM, symmetric Kullback-Leibler divergence is most
comonly used, which was proposed by Steyvers and Griffiths [35]
for determining the number of stable topics. The dissimilarity be-
tween two topics, j1 and j2, is measured as follows:

KL(j1, j2) =
1
2

W∑
k=1

ϕ
′(j1 )
k log2 ϕ

′(j1 )
k /ϕ

′′(j2 )
k +

+
1
2

W∑
k=1

ϕ
′′(j2 )
k log2 ϕ

′′(j2 )
k /ϕ

′(j1 )
k ,

where ϕ ′ and ϕ ′′ correspond to the estimated topic-word distri-
butions from two different runs. The topics of the second run are
re-ordered to correspond as best as possible (using a greedy algo-
rithm) to the topics of the first run [35].

Further, based on this measure, the algorithm for finding stable
topics for different topicmodels is proposed in [24]. In this approach,
pairwise comparison is carried out for all topics of a solution with
all topics of another solution. Thus, if a topic is stable then it is
regularly reproduced in each run of the algorithm.Work [24] shows
that different topic models give different number of stable topics
applied to the same dataset.

Let us note that in the field of statistical physics, KL divergence
is closely related to free energy. In the framework of Boltzmann-
Gibbs statistics, KL divergence can be expressed as: KL(p |q) =
β[F (p) − F (q)] [1] , where p and q are the probability distributions
of a system residing in non-equilibrium and equilibrium states,
respectively. F (p) and F (q) denote the free energies of the system
[33] in non-equilibrium and equilibrium states, respectively, and
T is the temperature of the system. Let us remark that the free
energy principle tries to explain how (biological, physical, econom-
ics) systems maintain their order (non-equilibrium steady state) by
restricting themselves to a limited number of states. Free energy is
expressed in terms of Shannon-Gibbs entropy and internal energy
by following formula: F = E −TS , where E is internal energy, S is
Shannon-Gibbs entropy, T is temperature. Consequently, KL diver-
gence is the difference of the off-equilibrium and equilibrium free
energies. The difference between free energies is a key feature of
thermodynamic approach [23], which is discussed subsequently.

3.3 Selection of hyper-parameters in topic
models

In general, the hyper-parameters α and β of LDA model have a
smoothing effect on the results of TM, that influences the sparsity of
matrices Φ and Θ [16]. The sparsity of matrices influences, in turn,
the number of topics, which can appear in a document collection.
Consequently, the number of topics may implicitly depend on the
values of hyperparameters. Work [15] suggests a rule to select
hyperparameters: α = 50/T and β = 0.01, where T is the number
of topics. Such values of parameters were widely used in different
studies [2, 26, 29]. On the other side, the effect of changing the
values of hyperparameters was studied in the following form: α ′ =
m · α , β ′ = n · β varying n andm [39], where the influence was
analyzed using logarithm of probability. It has to be noted that the
behaviour of probability logarithm is different in [15, 39] due to the
different used datasets. Therefore, the use of probability logarithm is
not always justified when working with different types of datasets,
such as in cross-national studies where the results of topic models in
different languages has to be compared. Asuncion et al. [4] describe
how to select the values of hyperparameters as well as the optimal
number of topics for four different topic models (collapsed Gibbs
sampling, variational Bayesian inference, 2 versions of collapsed
variational Bayes) using perplexity and Minka’ algorithm [28].

4 RENYI ENTROPY, DEFORMED PERPLEXITY
AND KULLBACK-LEIBLER DIVERGENCE IN
TOPIC MODELLING

The author of work [21] proposes an entropy-based approach for
analysing the results of topic modelling. Here, the collection of
documents can be considered a mesoscopic information system
consisting of millions of elements (words and documents) with an
initially unknown number of topics. If we regard the change in the
number of topics set by the researcher as a process in which the
system exchanges information with the environment, then such
a system will be an ’information thermostat’ [6]. The latter, by
definition, differs from a physical thermostat by being an open
system. Accordingly, with a change in the number of topics, the
information system may not reach an equilibrium state in the sense
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of the Gibbs-Shannon entropy maximum, but it may stabilize in an
intermediate equilibrium state, which is determined by the local
minimum of Renyi or Tsallis entropy. The totality of words that are
statistically frequently found together in a large number of docu-
ments forms what can be called a topic. A collection of documents
can contain only a finite number of such structures. Therefore, the
cumulative set of words with a probability above a certain threshold
presumably should be constant. It is these stable structures that
should be revealed through topic modeling.

So, textual collections can be considered statistical system, for
which one can calculate such quantities as energy, entropy and free
energy. Analogous approach is widely used in pattern recognition
[10].

The calculation of free energy value in TM is based on the fol-
lowing assertions [23]: 1) The result of TM is a matrix Φ denoting
a distribution of unique words by topics, whose size isW · T ; 2)
This matrix defines the total number of micro-states of a textual
statistical system. Each element of the matrix corresponds to a
micro-state, which is characterized by the belonging probability of
each word to each topic.

Correspondingly, the energy of a micro state can be expressed
as ϵwt = − ln(pwt ), where pwt is the probability of the word w
under the topic t . Let the density-of-states function be defined as
ρ (E) =

N (E )
WT , where N (E) is the number of states with tat least

energy E. The relative entropy of the system can be expressed as
S (E) = ln(ρ (E)), where ρ (E) characterizes the relation between the
initial distribution (when all elements of the ensemble have the
same belonging probabilities to different topics, namely p = 1

W )
and the distribution obtained as the result of topic modelling.

Full internal relative energy of an ensemble of words in textual
collection can be written as E =

∑
t
∑
w pwt
T , and the relative free

energy as a function of the number of topics can be written as:
ΛF = F (T ) − F0 = E (T ) − E0 − (S (T ) − S0)T =

= − ln(
∑T
t=1
∑W
w=1 pwt

T
) −T ln( N1

WT
),

where N1 is the number of states satisfying pwt > 1/W , F0 and E0
are the free and internal energies of the initial state, respectively,
and S0 is the Gibbs entropy of the initial state. F (T ), E (T ) and
S (T ) are the free energy, internal energy and Gibbs entropy of the
final state, respectively. In the framework of [23], the behavior of
Λ̃F =

F (T )−F0
T is experimentally investigated under variation of

the number of topics for Gibbs sampling model. Free energy of an
ensemble of words can be expressed by Renyi entropy SRq=1/T using
escort distribution [9, 19]: SRq=1/T =

F
T−1 , q =

1
T , where q is the

deformation parameter. Let us note that Gibbs-Shannon entropy is
a special case of Renyi entropy, namely, SRq → SGS as q → 1, where
SGS is Gibbs-Shannon entropy. The search of the optimal number
of topics corresponds to the search of the minimum non-extensive
entropy that in turn corresponds to the maximum of information
[8].

The algorithm of finding the optimal number of topics consists
of the four steps [21]: 1) Running a series of topic modeling pro-
cedures with different number of topics. The output is a series of
matrices of words’ distributions by topics. 2) Computing the value
of the density-of-states function for each matrix. 3) Computing

the value of Renyi entropy according to: SRq=1/T =
F

T−1 . 4) Finding
the global minimum of Renyi entropy. This approach allows us to
estimate the level of topic model entropy compared to the initial
state (which corresponds to the maximum value of entropy). Since
the information measure I satisfies: I = −S , the maximum entropy
corresponds to the minimum information [8]. Thus, the search-
ing of optimal values of parameters can be realized by searching
the minimum of Renyi entropy and modified version of perplexity,
which is defined below. Note that the approach described in [21] is
dedicated to determining the optimal number of topics, whereas we
propose in this paper to use analogous method to tune the values
of hyper-parameters for LDA model and values of regularization
parameters for BigARTM model.

Since perplexity is an exponential function of Gibbs-Shannon
entropy, a deformed version of perplexity can be defined using the
above Renyi entropy approach as: perplexityq = eS

R
q = e

F
T−1 . Note

that the deformed perplexity has the behaviour similar to behaviour
of Renyi entropy (but more amplitude) and, hence, it has clear local
minima analogous to local minima of Renyi entropy.

Both Renyi entropy and deformed perplexity have several advan-
tages. Firstly, these values are expressed by the difference of free
energies that means a close relation between deformed entropy (or
deformed perplexity) and KL divergence. Secondly, the values of
Renyi entropy and deformed perplexity do not depend on the size
of dataset rather only on the parameters of topic models. Thirdly,
Renyi entropy and deformed perplexity behave in a similar way
for different datasets and adequately reflect the features of topic
models under boundary conditions T = 1,T → ∞. The difference
in topic models behaviour is characterized by the location of a
global and some local minima. Fourthly, both values can be used
for selecting the optimal number of topics and also for choosing
the values of hyper-parameters or regularization parameters by
finding the minimum of Renyi entropy or deformed perplexity. In
the next section of this work we demonstrate the applicability of
our approach for selecting different parameters in different topic
models.

5 DESCRIPTION OF DATA AND COMPUTER
EXPERIMENTS.

The purpose of this part of the work is application of deformed en-
tropy (Renyi entropy) and the deformed perplexity for the finding of
optimal hyper-parameters in three topics models (pLSA, BigARTM
and LDA Gibbs sampling). The experiments were conducted on
three different datasets (Russian, English, and French-language
datasets). The choice of regularization parameters is based on the
principle of searching for a minimum of entropy / perplexity with
variations of the number of topics and values of hyper-parameters.
The choice of the minimum of Renyi entropy is due to the fact
that the number of topics corresponding to the minimum of the en-
tropy coincides with the human markups [21]. For this reason, two
datasets (Russian and English) were chosen with a known number
of topics. It means that we know in advance the number of topics
and topics themselves in the collections. This allows us to evaluate
the effect of the regularization procedure, and how the value of the
coefficients affects the results of topic modeling.
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• Russian Dataset (lenta_ru): it consists of 8630 documents
(containing 23297 unique words) in Russian language, each
of which is manually annotated with a class among 10 topic
classes. However, some of these topics are strongly correlated
to each other, Human annotators had a small disagreement
about topics, which really exist in dataset, therefore the num-
ber of topics can slightly vary in this dataset. As consequence,
different topic models can give slightly different number of
topics in the collection [21]. Therefore, the documents in
this dataset can be represented by 7 to 10 topics.
• English Dataset: the 15404 English documents (containing
50948 unique words) composing this dataset are manually
annotated with a topic class among 20 topic classes. This is a
famous dataset which is called ’20 Newsgroups’ [32]. Related
work [7] argued that 14 to 20 topics are suitable to represent
the documents of this dataset.
• French Dataset: it contains 25000 documents in French lan-
guage, where 18749 words appear in the whole dataset. We
use this dataset to show that the behavior of entropy and
deformed perplexity is similar to the correspondent behav-
iors for Russian and English datasets. In this case, using the
formalism of the entropy approach, it is possible to evaluate
the optimal number of topics in a dataset with a previously
unknown distribution of topics.

The effectiveness of Renyi entropy to indicate the evaluation of
optimal hyper-parameters values and number of topics is tested
with detailed experiments, which are conducted on the above men-
tioned datasets. For more general evaluation, three different models,
namely pLSA, BigARTM and LDA Gibbs sampling, are applied on
all datasets. In addition to the wide employment of these models in
TM, another reason to consider them in this work is their different
characteristics. In other words, pLSA is a basic model, which is
parametrized with only the number of topics, whereas BigARTM
and LDA Gibbs sampling models are regularized versions of pLSA
model with different regularization options. Accordingly, this work
demonstrates how to select the optimal parameters of regularization
using Renyi entropy and deformed perplexity.

5.1 Discussion of pLSA model for three
datasets.

In this evaluation, pLSA model is applied on the three datasets to
study the behaviour of Renyi entropy and deformed perplexity in
dependence on number of topics. The details of the simulation on
each dataset is described in the following:

1) The Russian dataset (lenta_ru): Figure 1 shows the behaviour
of Renyi entropy as a function of the number of topics on the Rus-
sian dataset. The minimum of Renyi entropy is marked by symbol
’x’ on the figure. Further we also mark the minimum of Renyi en-
tropy by this symbol on corresponding figures. As demonstrated
in Figure 1, the minimum of Renyi entropy indicates the optimal
number of topics which is close to human coding.

2) English Dataset: According to [7], the documents in this
dataset can be well represented by a number of topics between 14
and 20. Figure 2 presents Renyi entropy curve in terms of number
of topics. Despite the fact that in the region of minimum entropy
and deformed perplexity there are small fluctuations associated

Figure 1: Dependence of Renyi entropy on the number of
topics (pLSA on Russian dataset).

Figure 2: Dependence of Renyi entropy on the number of
topics (pLSA on English dataset).

Figure 3: Dependence of Renyi entropy on the number of
topics (pLSA on French dataset).

with the instability of topic models, the minimum of both functions
is easily determined, and this minimum corresponds to 15 topics.

3) French dataset: Similarly to the Russian and English datasets,
pLSA is applied on the French dataset. As shown in Fig. 3 Renyi en-
tropy is relatively stable with different number of topics compared
to the two other datasets. This can be explained with the high num-
ber of words per document which allows different clustering result.
However, the obtained result indicates that the optimal number
of topic corresponds to 17, which is approximately similar to the
number of topics in news papers.
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Figure 4: Dependence of Renyi entropy on the number of
topics for different values of "sparse phi" regularizer (Rus-
sian dataset)

5.2 BigARTMmodel
In this model, we study the dependence of the optimal number of
topics on different values of regularization coefficients. We con-
sider two types of regularization, which are called "Sparse phi
regularizer" and "Sparse theta regularizer". Each of the regularizers
is characterized by a regularization coefficient, which was varied in
the range [-10, 10] in our numerical simulations. So, we study the
effect of the influence of two types of regularization on the results
of topic modelling.

1) Russian-language dataset (lenta_ru).
1.1) "Sparse phi regularizer".
Since we know the evaluation of the number of topics in a given

dataset by human markup, a shift of the minimum to the area of 1
or 2 topics means a strong over-regularization of the model. Thus,
this regularization model is not suitable for using at large values of
the regularization coefficient, but at small value it coincides with
the plsa model.

1.2) "Sparse theta regularizer".
The distribution of Reny entropy minima under variation of

regularization coefficient is given in Fig. 5. Here one can see that
the values of the regularizer do not influence significantly to the
optimal number of topics. So, the results are be more stable with
"sparse theta regularizer" comparing to "sparse phi" regularization.

2) English-language dataset (20 Newsgroups).
2.1) "Sparse phi regularizer".
The change in the value of this regularizer leads to a significant

distortion of the location of Renyi entropy minimum for English
language dataset (Fig. 6). Shift of the minimum to the area of 4 or 5
topics means a strong over-regularization of the model. So, value
of "sparse_phi" should rather be -0.1 than 10 or -10.

2.2) "Sparse theta regularizer".
Numerical results are represented in Fig. 7. Here one can also

see the shift of the optimal number of topics under variation regu-
larization coefficient.

3) French dataset
As shown in Fig. 8, changes in the value of ‘Sparse phi” regular-

izer lead to a shift of the minimum Renyi entropy and the optimal

Figure 5: Dependence of Renyi entropy on the number of
topics for different values of "sparse theta" regularizer (Rus-
sian dataset)

Figure 6: Dependence of Renyi entropy on the number of
topics for different values of "sparse phi" regularizer (Eng-
lish dataset)

Figure 7: Dependence of Renyi entropy on the number of
topics for different values of "sparse theta" regularizer (Eng-
lish dataset)

number of topics. Variation of “Sparse theta” regularizer does not
influence significantly on the optimal number of topics (Fig. 9).
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Figure 8: Dependence of Renyi entropy on the number of
topics for different values of "sparse phi" regularizer (French
dataset)

Figure 9: Dependence of Renyi entropy on the number
of topics for different values of "sparse theta" regularizer
(French dataset)

Application of Renyi entropy allows to see the tendency of regu-
larization procedure for a topic model. Topic models possess fluc-
tuations that can lead to unreliable jumps [22]. That is why we
recommend to run topic modeling with the same values of parame-
ters at least three times and then to average the result [22].

5.3 LDA Gibbs sampling model
Topic model based on Gibbs sampling procedure has three parame-
ters: number of topics and two other parameters of Dirichlet dis-
tribution (α , β ) that need to be selected. Within the framework of
this paper, the number of topics was varied in the range [2, 50] and
hyper-parameters were varied in the range [0.1, 1]. Renyi entropy
was calculated for each model.

1) Russian dataset (lenta_ru).
Varying the parameters α , β and the number of topics leads to the

appearance of a set of local entropy minima, that corresponds to the
fact that the values of Renyi entropy minima and maxima depend
on the number of topics and on the values of hyper-parameters
as well. Figure 10 shows the dependence of Renyi entropy on the
number of topics under variation of hyper-parameters. Small jumps

Figure 10: Dependence of Renyi entropy on the number
of topics under variation of hyper-parameters for Russian
dataset.

Figure 11: Fluctuation of the difference between the maxi-
mum and minimum of Renyi entropy values as a function
of topic number for the Russian-language dataset.

on this figure are due to the fact that this figure is plotted for 100
different values of hyper-parameters simultaneously and due to
fluctuations of TM. Despite these jumps one can see the common
tendency of Renyi entropy curve for different values of hyper-
parameters. Figure 11 shows the value of fluctuation in percent as
a function of the number of topics for the given dataset. This plot
shows that the variation of hyper-parameters leads to small value
of fluctuation (about 4-8 % with respect to the average value) and
does not significantly influence on the evaluation of the optimal
number of topics.

Moreover, Fig. 12 illustrates the average value of Renyi entropy,
calculated across Renyi entropy values for all values of hyper-
parameters α and β for fixed number of topics. The plot shows
that, despite the fluctuation, minimum of entropy corresponds to
6-7 topics that coincides with the results of pLSA model for this
dataset. Thus, it can be considered that the hyper-parameters α
and β do not play a big role for this dataset. Hence, one can take
any value of hyper-parameters in the range [0.1, 1] and it will not
influence significantly to the results of TM.

2) English dataset (20 Newsgroups). The variations in the param-
eters α , β and the number of topics for the English dataset also show
the existence of a set of local minima of Renyi entropy (Fig. 13),
however, the level of fluctuations is about 4-11% of the average
Renyi entropy (Fig. 14) that is not essential. The minimum of the
average Renyi entropy can be seen in Fig. 15, the common tendency
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Figure 12: The average value of Renyi entropy as a function
of the number of topics for the Russian-language dataset.

Figure 13: Dependence of Renyi entropy on the number
of topics under variation of hyper-parameters for English
dataset.

Figure 14: Fluctuation of the difference between the maxi-
mum and minimum of Renyi entropy values as a function
of topic number for the English dataset.

can be seen in Fig. 13 . These figures show that the optimal number
of topics for this dataset is about 14-15 topics, that coincides with
the result of pLSA model as well.

3) French dataset. The behavior of Renyi entropy in dependence
on the number of topics and values of hyper-parameters is shown
in Fig. 16. The variations in the parameters α , β and the number
of topics also show the existence of a set of local minima of Renyi
entropy, the level of fluctuations is about 3-9% of the average Renyi

Figure 15: The average value of Renyi entropy as a function
of the number of topics for the English dataset.

Figure 16: Dependence of Renyi entropy on the number
of topics under variation of hyper-parameters for French
dataset

Figure 17: The average value of Renyi entropy as a function
of the number of topics for the French dataset.

entropy (Fig. 18). Fig. 17 shows that the optimal number of topics
for this dataset is about 16 topics.

So, for LDA Gibbs sampling model we found out that the values
of hyper-parameters do not lead to significant changes in the results
of TM with respect to the optimal number of topics according to
Renyi entropy approach.

6 CONCLUSION.
The three topic models, considered in this work, employ different
variants of regularization, where regularization parameters play
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Figure 18: Fluctuation of the difference between the maxi-
mum and minimum of Renyi entropy values as a function
of topic number for the French dataset.

different roles. However, the behavior of Renyi entropy and the
deformed perplexity is similar for different models and datasets
in different languages. At small values of the number of topics
(1,2), the partitioning of datasets is of little avail since entropy is
extremely large (correspondingly, the information value is almost
zero). Further, increase of the number of topics leads to decrease of
entropy. At some point entropy reaches the global minimum, but
then, as the number of topics increases further, the entropy tends
to the maximum, since in this case the overall distribution of words
tends to flat distribution, which is known to have a large value of
entropy (and a small value of information). Let us note that each
of the datasets has a different number of topics corresponding to
the minimum of entropy (maximum of information), while these
minima coincide with human markups. The behavior of deformed
perplexity is similar to the behavior of Renyi entropy.

In the additive regularization model, higher values of regulariza-
tion parameters lead to larger deviation of the entropy minimum
from the human markup. Therefore, large values of regularization
parameters cannot be used in BigARTMmodel.When parameters in
LDAGibbs samplingmodel are varied, a set of local minima of Renyi
entropy (and deformed perplexity) emerges, however, the average
fluctuation is about 4-8%, while the minimum of average Renyi
entropy coincides with the human markup. It can be concluded that
the contribution of the change in the number of topics is more sig-
nificant than the contribution of the change in hyper-parameters α
and β to the results of topic modeling. Therefore, when conducting
topic modeling it is sufficient to fix hyper-parameters, for example,
by applyingStyers’ and Griffith’s empirical rule [15], where the
parameters are inversely proportional to the number of topics, or
simply use hyperparameters as constants, for example, α = β = 0.1.

Since BigARTM and LDA Gibbs sampling models are different
versions of regularization compared to pLSAmodel, the comparison
of Renyi entropy behavior allows us to suggest that some types of
regularization significantly distort the true distribution of topics
present in the datasets. For instance, the idea of regularization
based on the use of conjugate functions (Dirichlet and multinomial
distribution) turns out to be successful and, as our calculations
show, such models allow for the "true" numbers of topics to be
found.

Our research also shows that application of Renyi entropy and
deformed perplexity allows to construct an effective strategy to find
and select an appropriate regularization model and to formulate
criteria for the selection of the values of regularization coefficients.
In the future, the calculation of Renyi entropy or deformed perplex-
ity can be embedded in the algorithms of topic modeling, that will
significantly simplify its use in various areas of machine learning.
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