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Abstract
Topic modelling is a popular approach for cluster-
ing text documents. A variety of different types of
regularization is implemented in topic modelling.
In this paper we propose a novel approach for
analyzing the influence of different regularization
types on results of topic modelling. Based on
Renyi entropy, this approach is inspired by the con-
cepts from statistical physics, where an inferred
topical structure of a collection can be consid-
ered an information statistical system residing in
a non-equilibrium state. By testing our approach
on three models - Probabilistic Latent Semantic
Analysis (pLSA), Additive Regularization of Topic
Models (BigARTM) and Latent Dirichlet Alloca-
tion (LDA) with Gibbs sampling - we, first, show
that the minimum of Renyi entropy coincides with
the “true” number of topics, as determined in two
labelled collections. Simultaneously we find that
Hierarchical Dirichlet Process (HDP) model as a
well-known approach for topic number optimiza-
tion fails to detect such optimum. Next, we demon-
strate that large values of the regularization coeffi-
cient in BigARTM significantly shift the minimum
of entropy from the topic number optimum, which
effect is not observed for hyper-parameters in LDA.
We conclude that regularization may introduce un-
predictable distortions into topic models that need
further research.

1 Introduction
Topic modelling (TM) is a popular statistical approach for
discovering latent topics in a collection of documents, where
each topic is a distribution over the vocabulary. Most of the
existing TM models are based on different types of regular-
ization and, hence, are controlled by regularization penalty
terms (e.g. BigARTM) or hyper-parameters (e.g. LDA). It
has been proved that the choice of these parameters has a
large impact on the modelling [George and Doss, 2017]. Es-
timating their impact on the result of TM and searching for
their optimal values are not trivial. Moreover, existing met-
rics in the field of TM are time-consuming and usually based
on monotonous functions such as exponent or logarithm that

do not effectively assist the determination of the set of param-
eters. In this paper we propose an effective method, based on
Renyi entropy [Renyi, 1970], for analyzing the influence of
regularization on the outcome of TM. Our approach also al-
lows us to estimate optimal values of topic model parameters
including the number of topics and regularization parameters.
We compare the results of our approach with log-likelihood
metric and find that our method is faster and, in addition,
allows to estimate the optimal number of topics while log-
likelihood does not.

2 Background
TM is a family of mathematical algorithms based on the fol-
lowing assertions [Hofmann, 1999]:
1. Let D̂ be a collection of textual documents with D docu-
ments, Ŵ be a set of all unique terms (vocabulary) with W
elements. 2. It is assumed that there exists a finite number T
of topics, and each entry of a word w in document d is asso-
ciated with a certain topic t ∈ T̂ (T̂ is a set of topics). 3. A
collection of documents is considered stochastic independent
sample of triples (wi, di, ti), i = 1, ..., n, from a discrete dis-
tribution p(w, d, t) on a finite probability space Ŵ × D̂ × T̂ .
Words and documents are observable variables, topics are la-
tent (hidden) variables. 4. It is assumed that the order of
words in the set of documents is not important for TM (‘bag-
of-words’ model). Similarly, the order of documents in a col-
lection is also insignificant.
In TM, the probability p(w|d) of a term w to occur in a doc-
ument d can be expressed as follows:
p(w|d) =

∑
t∈T̂ p(w|t)p(t|d) =

∑
t∈T̂ φwtθtd, where

p(w|t) = φwt is the probability of a word w to occur un-
der a topic t, p(t, d) = θtd is the probability of a topic t
in a document d. Probabilities φwt form a matrix of distri-
bution of words by topics Φ = (φwt)w∈Ŵ ,t∈T̂ and proba-
bilities θtd form a matrix of distribution of topics by docu-
ments Θ = (θtd)t∈T̂ ,d∈D̂. Nowadays, several types of mod-
els exist in the field of TM, and can be classified into three cat-
egories: 1. Topic models based on maximum likelihood prin-
ciple [Blei et al., 2003]. Here matrices Φ and Θ are searched
by Expectation-Maximization (E-M) algorithm. 2. Topic
models based on Markov chains (Gibbs sampling model)
[Asuncion et al., 2009], where φwt and θtd are searched by
calculating expectation through Monte-Carlo method. De-



spite different mathematical approaches of these two types of
models, both of them produce similar topic solutions [Asun-
cion et al., 2009]. 3. Hierarchical Dirichlet Process (HDP)
is an alternative model which is considered in literature as a
non-parametric [Wang et al., 2011]. However, it admits a set
of predefined parameters (e.g. truncation level) which influ-
ence the results of modelling. In our paper, HDP model was
used for estimating the ”optimal” number of topics. Let us
note that in the process of TM for models based on both E-M
algorithm or Gibbs sampling (GS) algorithm, a transition oc-
curs to a highly non-equilibrium state (or non-uniform state,
in other words). The flat distribution is chosen as the initial
distribution of words by topics and documents by topics for
LDA (GS), while for pLSA (E-M) and LDA (E-M) the ini-
tial distribution is defined by random number generator. For
both types of algorithms the initial distribution corresponds to
maximum entropy. In the process of TM, for all types of al-
gorithms and initial distributions, redistribution of words and
documents by topics proceeds so that a significant portion of
words (about 95% of all unique words) acquires probabilities
close to zero and only about 3-5 % of words receive relatively
high probabilities [Koltcov et al., 2014]. Numerical experi-
ments demonstrate that the number of words with high proba-
bilities depends on the number of topics and values of hyper-
parameters that allows us to construct a theoretical approach
for analyzing such dependency using a perspective of statisti-
cal physics. Now let us discuss log-likelihood and perplexity
known as standard metrics in TM. The log-likelihood of a set
of documents can be directly expressed as a function of the
TM parameters. For example, for LDA model one obtains the
following expression [Wallach et al., 2009], [Heinrich, 2004]:
ln(P (D̂|Φ, α) =

∑D
d=1

∑W
w=1 ndw ln(

∑T
t=1 φwtθtd), where

ndw is frequency of word w in document d, α is hyper-
parameter for topic distribution in documents. A better model
will yield higher probabilities of documents, on average [Wal-
lach et al., 2009]. Another measure which is closely related
to likelihood is perplexity which is defined for LDA model
as: Perplexity = exp(− ln(P (D̂|Φ, α)/

∑D
d=1 nd), where

nd is the number of words in document d. Perplexity be-
haves as a monotone decreasing function [Asuncion et al.,
2009] and is dependent on the size of vocabulary [De Waal
and Barnard, 2008] which makes it unsuitable for compari-
son across datasets. Therefore, in our work we use only like-
lihood.

3 Entropy approach for analyzing topic
models

Our entropy approach is based on the following asser-
tions [Koltcov, 2018]: 1. A collection of documents is consid-
ered a mesoscopic information system consisting of millions
of elements (words and documents). Correspondingly, behav-
ior of such a system can be studied by application of models
from statistical physics. 2. A topic is a state (an analogue of
spin direction), which each word and document in the collec-
tion can take. Here, a word and a document can belong to
different topics with different probabilities. For example, a
word w resides in state t with probability pwt, so, elements of
matrix Φ are probabilities of micro-states in terms of physics.

3. Such information system is open and exchanges energy
with the environment via changing the temperature. Here,
the temperature of information system is the number of topics
which is a parameter and should be selected by searching for
a minimum non-extensive entropy of the system. 4. To mea-
sure the degree to which a given system is non-equilibrium
one can use the difference of free energies ΛF = F (T )−F0,
where F0 is the free energy of the initial state (chaos), F (T )
is the free energy calculated after TM for a given number of
topics. 5. The values of hyper-parameters or regularization
coefficients and the number of topics are varied parameters,
which influence the value of the difference of free energies.
6. The optimal number of topics and the set of optimal hyper-
parameters of topic model corresponds to the situation when
information maximum is reached (i.e. free energy minimum).

The sum of probabilities of words in a topic model equals
to the number of topics, i.e., T =

∑T
t=1

∑W
w=1 pwt, where

pwt ∈ [0, 1] for all w = 1, ..,W ; t = 1, ..., T . In the
framework of statistical physics it is common to investigate
distribution of statistical systems by energy levels, where en-
ergy is expressed in terms of probability. In accordance with
this approach, we divide the range of probabilities [0, 1] by
a fixed number of intervals and determine energy levels cor-
responding to these intervals, and then seek the number of
micro-states belonging to each energy level (note that these
numbers depend on the number of topics and values of hyper-
parameters of a topic model). Division into intervals is con-
venient from a computational point of view. If the lengths of
such intervals tend to zero, the distribution of words by inter-
vals will tend to probability density function. However, for
simplification we will consider a two-level system, where the
first level corresponds to words with small probabilities close
to zero and the second level corresponds to words with high
probabilities.

On this basis, we introduce ’density-of-states function’ for
words with high probabilities as follows: ρ = N/(WT ),
where N is the number of micro-states with high probabil-
ities. By high probability we mean probability satisfying:
p > 1/W . The choice of such level is informed with the fact
that values 1/W are the initial values of matrix Φ for a topic
model. Hence, during the process of TM, probabilities of
words redistribute with respect to this threshold level. Based
on the concepts of statistical physics, the level of micro-states
with high probabilities can be characterized by the amount of
energy expressed in terms of combination of probabilities of
micro-states residing in the given interval (in our case, above
the threshold level 1/W ):

E = − ln(P̃ ) = − ln(
∑
wt

pwt · Ω(pwt − 1/W )), (1)

where the step function Ω is defined by Ω(pwt − 1/W ) = 1
if pwt ≥ 1/W , Ω(pwt − 1/W ) = 0 if pwt < 1/W . So, in
equation (1) we sum only probabilities that are greater than
1/W . The energy level is characterized by two parameters:
1. Sum of probabilities of micro-states, that lie in the cor-
responding interval, P̃ ; 2. The number of micro-states, N ,
whose probabilities lie in this interval. For a two-leveled sys-
tem the main contribution to the entropy and energy of the
whole system is given by the states with high probabilities,



that is mainly by the upper level. Respectively, the free en-
ergy of the whole system is almost entirely determined by the
entropy and the energy of one level. Free energy of a statisti-
cal system can be expressed through Gibbs-Shannon entropy
and through the internal energy in the following way [Tsallis,
2009]: F = E−TS = E−S/q, where q = 1/T . Entropy of
an information statistical system can be expressed through the
number of micro-states belonging to the same level [Tkačik
et al., 2015] : S = ln(N). It follows that free energy of a
topic model is expressed through P̃ and ρ in the following
way:

ΛF =F (T )− F0 = (E(T )− E0)− (S(T )− S0)T =

=− ln(P̃ /T )− T ln(ρ), (2)

whereE0, S0 are the energy and the entropy of the initial state
of the system. Hence, the degree to which a given system is
non-equilibrium can be defined as the difference between the
two free energies and expressed in terms of experimentally
determined values ρ and P̃ . These values are calculated for
each topic model under variation of parameter T and hyper-
parameters.

On the other hand, free energy and Renyi entropy can be
expressed in terms of partition function (statistical sum). The
latter, in turn, can by expressed in terms of ρ and P̃ [Mora and
Walczak, 2016]: Zq = e−qΛF = e−qE+S = ρ(qP̃ )q , where
q = 1/T . This relation allows us to express Renyi entropy in
terms of free energy and experimentally determined values P̃
and ρ:

SR
q =

ln(Zq)

1 − q
=

ln(e−qΛF )

1 − q
=
q ln(P̃ /T ) + ln(ρ)

1 − q
. (3)

Application of Renyi entropy for investigation of TM results
is useful due to the following reasons. Firstly, Renyi entropy
determines the degree to which the results of TM are non-
equilibrium, so it accounts for the contribution of the initial
distribution of the topic model. Secondly, topic models can
be optimized based on finding the minimum of Renyi entropy.
Thirdly, Renyi entropy, in contrast to Gibbs-Shannon entropy,
allows to account for two different processes: decrease in
Gibbs-Shannon entropy and increase in internal energy both
of which occur with the growth of the number of topics. What
follows from this is the existence of an area where these two
processes counterbalance each other. In this area free energy
and, correspondingly, Renyi entropy have the minimum val-
ues. Minimum of entropy corresponds to maximum of infor-
mation of a topic model [Koltcov, 2018]. Hence, evaluation
of the influence of hyper-parameters on the results of TM can
be measured by means of Renyi entropy.

4 Description of data and computer
experiments.

For our numerical experiments we used the following
datasets:

• Russian Dataset (from lenta.ru news agency): it con-
sists of 8,630 news texts (containing 23,297 unique words)
in Russian language, each of which is manually assigned
with a class from a set of 10 topic classes. However, some

of these topics are strongly correlated to each other. There-
fore, the documents in this dataset can be represented by
7-10 topics.

• English Dataset (the well-known ’20 Newsgroups’
dataset): 15,404 English news articles containing 50,948
unique words 1. Each of the news items belongs to one or
more of 20 topic groups. Since some of these topics can be
unified, 14-20 topics can represent the documents of this
dataset [Basu et al., 2008].

In order to determine the influence of regularization on TM
we investigated the following models: 1) pLSA model [Hof-
mann, 2001], a basic model with only one parameter - ’num-
ber of topics’; 2) LDA (GS) model [Griffiths and Steyvers,
2004], that can be considered a regularized extension of
pLSA, where regularization is based on prior Dirichlet dis-
tributions with parameters α and β; 3) BigARTM model
[Vorontsov and Potapenko, 2014] with smoothing/sparsing
regularizers for matrix Φ (smooth/sparse phi) and matrix
Θ (smooth/sparse theta), here termed sparse phi and sparse
theta, respectively. These regularizers allow a user to obtain
subsets of topics highly manifest in a small number of texts
and/or words (sparsing effect), as well as subsets of topics rel-
atively evenly distributed across all texts and words (smooth-
ing effect). The parameter that controls the value of spars-
ing is a regularization coefficient termed τ . Additionally, we
compared the results of the Renyi entropy approach for de-
termining the ’optimal’ number of topics with the results of
HDP model. In our numerical experiments the number of top-
ics T was varied in the range [2;50] in the increments of one
topic. For LDA model hyper-parameters α and β were varied
in the range [0.1;1] in the increments of 0.1. For BigARTM
model we used the following values of τ : 0.01, 0.1, 1, and
10. For each topic model and for each dataset we calculated
log-likelihood and Renyi entropy.

Let us note that computational efficiency of Renyi entropy
approach turned out to be much higher than that of log-
likelihood. For instance, calculation of Renyi entropy for
the Russian dataset under variation of T in the range [2;50]
in the increments of one took about 15 minutes, while cal-
culation of log-likelihood for the same data took about nine
hours. Such a great difference occurs because for Renyi en-
tropy calculation it is enough to scan matrix Φ once, while
for log-likelihood calculation one needs to multiply compo-
nents of two large matrices (Φ and Θ). The purpose of our
experiments was, firstly, to confirm that Renyi entropy allows
us to determine the ’optimal’ number of topics for the above
datasets and to compare the results of this approach with re-
sults obtained by HDP model. Secondly, the purpose was to
estimate the influence of hyper-parameters on results of TM
and to specify which variant of regularization gives better re-
sults according to log-likelihood and Renyi entropy.

4.1 Optimal number of topics: HDP vs Renyi
entropy in LDA (GS) and pLSA

To compare the results of HDP model, pLSA and LDA (GS),
we calculate weights of topics for HDP model, and Renyi en-
tropy for pLSA and LDA. HDP is a powerful model to cluster

1http://qwone.com/∼jason/20Newsgroups/

http://qwone.com/~jason/20Newsgroups/


Figure 1: Distribution of weights over the number of topics T for
HDP model (Russian dataset). TLT (100) – black, TLT (50) – red,
TLT (30) – green, TLT (20) – blue.

a collection of documents and inferring their topics without
requiring the number of topics in advance [Teh et al., 2006;
Wang et al., 2011]. Although this model is considered in the
literature as non-parametric because it can model data with
infinite number of topics, in real scenarios, users need to set
a truncation on the allowed number of topics in the entire
corpus. Since HDP returns the same number of topics as
the top-level truncation that is set before, it is assumed that
by discarding empty ones, the true number of topics can be
obtained [Wang et al., 2011]. In this experiment, we used
the software adapted from [Yau et al., 2014] to compute the
weights of topics based on the obtained topic distribution.
Fig. 1 plots together the outputs of four solutions of HDP
model (Russian dataset) that differ by the values of top-level
truncation parameter (TLT): 100, 50, 30, and 20. Each out-
put is represented by a curve which sorts the weights of all
inferred topics (whose number is always equal to TLT) in a
descending order. The idea is to give the user an opportunity
to cut off low-weight topics and to postulate that the “true”
number of topics is equal to the number of high-weight topics.
However, as can be seen, there is no clear threshold between
high-weight and low-weight topics. The curves are mono-
tone decreasing and do not allow to define the optimal num-
ber of topics. The same result was obtained for the English
dataset. Moreover, we applied the method proposed by Wang
and Blei [Wang and Blei, 2012] on both Russian and English
corpora. This method proposes a truncation-free stochastic
variational inference algorithm for HDP, which adapts the
model complexity on the fly instead of requiring truncation
values. For 100 runs, the method consistently inferred 28
topics on the Russian corpus and 24 topics for English cor-
pus with default parameters.

Fig. 2 demonstrates Renyi entropy curves calculated ac-
cording to equation (3) for LDA (GS) model. Here the
number of topics was varied under fixed values of hyper-
parameters: α = 0.5, β = 0.1. Both curves have explicit
minima of entropy, each of which is close to human mark-up.
Fig. 3 shows Renyi entropy curves for pLSA model. As it can
be seen, entropy curves for pLSA model and entropy curves
for LDA (GS) model are very similar and the locations of
minima are almost identical. However, Renyi entropy mini-
mum for LDA model is more visible than for pLSA model.

Figure 2: Renyi entropy distribution over the number of topics T
(LDA). Russian dataset - black, English dataset - red.

Figure 3: Renyi entropy distribution over the number of topics T
(pLSA). Russian dataset - black, English dataset - red.

4.2 Influence of hyper-parameters: pLSA vs LDA
(GS) model

Let us discuss the influence of hyper-parameters α and β of
LDA (GS) model on results of TM. Fig. 4 demonstrates de-
pendence of log-likelihood on the number of topics for dif-
ferent values of α and β (Russian dataset). One can see that
the increase in the values of hyper-parameters leads to the de-
crease in log-likelihood, which means that the model deterio-
rates as values of hyper-parameters increase. For α = β = 1
we obtain the worst result for all numbers of topics. How-
ever, these curves do not allow us to determine simultane-
ously the optimal values of regularization parameters and the
optimal number of topics. The behaviour of log-likelihood
for English dataset is similar to that for Russian dataset and,
therefore, we do not provide figure.

Fig. 5, 6 plot the curves of Renyi entropy for pLSA and
LDA (GS) for different values of hyper-parameters. One can
see that the increase in the values of hyper-parameters lifts
the entire entropy curve, i.e., entropy increases on average.
According to entropy approach the best model is the model
with minimum entropy. It follows that the optimal models
among the considered ones are pLSA and LDA (GS) with
α = 0.1, β = 0.1. Notice that minima of these optimal
models coincide. Strong regularization (α = 1, β = 1) leads
not only to the growth of the entropy values on average but
also to the horizontal shift of the minimum. One can conclude
that the optimal values of hyper-parameters for LDA model
with respect to Renyi entropy are α = 0.1, β = 0.1. We can
conclude that Renyi entropy approach allows us to determine
both the optimal values of hyper-parameters and the optimal



Figure 4: Log-likelihood distribution over T for different α and β
(Russian dataset). pLSA – black, LDA (α=0.1, β=0.1) – red, LDA
(α=0.5, β=0.1) – green, LDA (α=1, β=1) – blue.

number of topics, while log-likelihood metric allows us to
determine the optimal values of hyper-parameters only.

Figure 5: Renyi entropy distribution over T for different α and β
(Russian dataset). pLSA – black, LDA (α=0.1, β=0.1) – red, LDA
(α=0.5, β=0.1) – green, LDA (α=1, β=1) – blue.

4.3 Influence of regularization coefficients:
BigARTM vs pLSA

We further discuss the influence of regularization parameters
of BigARTM model on the results of TM. Here we consider
sparsing regularizers for matrix Φ (sparse phi) and matrix Θ
(sparse theta), where τ is regularization coefficient.

Fig. 7, 8 show the behavior of log-likelihood under varia-
tion of the number of topics for different values of regulariza-
tion coefficients. Both figures show that the increase in reg-
ularization coefficient impairs the model, and the minimum
value of regularization coefficient of BigARTM corresponds
to pLSA. The same result is obtained for the English dataset.
Let us note that the curve of log-likelihood does not allow us
to understand what happens with TM if one changes regular-
ization coefficient and the number of topics simultaneously.

Fig. 9, 10 plot Renyi entropy curves for BigARTM model
run on the Russian dataset under variation of the number of
topics for different values of regularization coefficient. One
can see that the range of coefficients [0.01; 1] gives small
fluctuations in entropy minimum. In addition, these minima
are located in the range [7;10] which corresponds to human
mark-up for this dataset. However, values of regularization
coefficient τ > 1 lead to significant distortion of the Renyi

Figure 6: Renyi entropy distribution over T for different α and β
(English dataset). pLSA – black, LDA (α=0.1, β=0.1) – red, LDA
(α=0.5, β=0.1) – green, LDA (α=1, β=1) – blue.

Figure 7: Log-likelihood distribution over T for different sparse
phis (Russian dataset): 1. pLSA – black. 2. BigARTM sparse
phi (τ=0.01) – red. 3. BigARTM sparse phi (τ=0.1) – green. 4.
BigARTM sparse phi (τ=1) – blue.

entropy curve, i.e., to the lift of the entire curve and to the
shift of the Renyi entropy minimum away from the known
number of topics. This behavior is similar to that observed in
fig. 5, 6 for hyper-parameters of classical LDA.

Likewise, the behavior of Renyi entropy for BigARTM on
the English dataset (fig. 11, 12) is identical to that for the
Russian dataset: the curve gets distorted when τ reaches the
same value τ > 1. Additionally, in both datasets the dis-
tortion introduced by regularizing phi is visibly larger than
the effect of theta. Our experiments show the existence of
a trade-off between model quality as determined by entropy,
and regularization that allows to obtain e.g. sparse or smooth
topics. In BigARTM, the smallest distortions are observed
with the smallest τ which yields solutions close to the en-
tirely unregularized model - pLSA. A similar result was ob-
tained in [Apishev et al., 2017], where pLSA was shown to
perform better than any regularized BigARTM model, except
the one with a dictionary-based regularizer. This was shown
for the task of revealing ethnicity-related topics in social me-
dia texts by using coherence metric and human mark-up of
topic interpretability.

5 Conclusion
We have proposed a method based on Renyi entropy for es-
timating the influence of model hyper-parameters and of reg-
ularization on the results of TM. This method was tested on



Figure 8: Log-likelihood distribution over T for different sparse
thetas (Russian dataset): 1. pLSA – black. 2. BigARTM sparse
theta (τ=0.01) – red. 3. BigARTM sparse theta (τ=0.1) – green. 4.
BigARTM sparse theta (τ=1) – blue.

Figure 9: Renyi entropy distribution over T for different sparse phis
(Russian dataset): 1. pLSA – black. 2. BigARTM sparse phi
(τ=0.01) – red. 3. BigARTM sparse phi (τ=0.1) – green. 4. Bi-
gARTM sparse phi (τ=1) – blue. 5. BigARTM sparse phi (τ=10) –
orange.

Figure 10: Renyi entropy distribution over T for different sparse
thetas (Russian dataset): 1. pLSA – black. 2. BigARTM sparse
theta (τ=0.01) – red. 3. BigARTM sparse theta (τ=0.1) – green.
4. BigARTM sparse theta (τ=1) – blue. 5. BigARTM spares theta
(τ=10) – orange.

pLSA, LDA (Gibbs sampling) and BigARTM models. We
demonstrated that higher levels of regularization and higher
values of hyper-parameters lead to lower log-likelihood and
higher entropy which is a clear sign of model deterioration.
They also shift the minimum of Renyi entropy away from the
optimal number of topics as determined by human-mark up,
thus undermining the ability of this metric to indicate better

Figure 11: Renyi entropy distribution over T for different sparse
phis (English dataset): 1. pLSA – black. 2. BigARTM sparse phi
(τ=0.01) – red. 3. BigARTM sparse phi (τ=0.1) – green. 4. Bi-
gARTM sparse phi (τ=1) – blue. 5. BigARTM sparse phi (τ=10) –
orange.

Figure 12: Renyi entropy distribution over T for different sparse
thetas (English dataset): 1. pLSA – black. 2. BigARTM sparse
theta (τ=0.01) – red. 3. BigARTM sparse theta (τ=0.1) – green.
4. BigARTM sparse theta (τ=1) – blue. 5. BigARTM sparse theta
(τ=10) – orange.

solutions. However, since both metrics indicate the highest
model quality there where the values of α, β and τ are low,
Renyi entropy (unlike log-likelihood) may be used not only
for finding the optima of those values, but also for finding
an optimal number of topics, since it is in the range of low
α, β and τ that Renyi entropy performs most accurately. In
addition, calculation of Renyi entropy is simpler and faster
than calculation of log-likelihood. Meanwhile, HDP does not
provide clear thresholds to select the optimal number of top-
ics. We conclude that Renyi entropy can be effectively used
for estimating the influence of regularization coefficients and
hyper-parameters on the results of TM, determining the op-
timal number of topics and estimating the effect of distor-
tion under the condition of simultaneous change of multiple
model parameters.
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